Skip to content
Engineering

Tiny device mimics human vision and memory abilities

RMIT University 3 mins read

Researchers have created a small device that ‘sees’ and creates memories in a similar way to humans, in a promising step towards one day having applications that can make rapid, complex decisions such as in self-driving cars.

The neuromorphic invention is a single chip enabled by a sensing element, doped indium oxide, that is thousands of times thinner than a human hair and requires no external parts to operate.

RMIT University engineers led the work, with contributions from researchers at Deakin University and the University of Melbourne.

The team’s research demonstrates a working device that captures, processes and stores visual information. With precise engineering of the doped indium oxide, the device mimics a human eye’s ability to capture light, pre-packages and transmits information like an optical nerve, and stores and classifies it in a memory system like the way our brains can.

Collectively, these functions could enable ultra-fast decision making, the team says.

Team leader Professor Sumeet Walia said the new device can perform all necessary functions – sensing, creating and processing information, and retaining memories – rather than rely on external energy-intensive computation, which prevents real-time decision making.

“Performing all of these functions on one small device had proven to be a big challenge until now,” said Walia from RMIT’s School of Engineering.

“We’ve made real-time decision making a possibility with our invention, because it doesn’t need to process large amounts of irrelevant data and it’s not being slowed down by data transfer to separate processors.”

What did the team achieve and how does the technology work?

The new device was able to demonstrate an ability to retain information for longer periods of time, compared to previously reported devices, without the need for frequent electrical signals to refresh the memory. This ability significantly reduces energy consumption and enhances the device’s performance.

Their findings and analysis are published in Advanced Functional Materials.

First author and RMIT PhD researcher Aishani Mazumder said the human brain used analog processing, which allowed it to process information quickly and efficiently using minimal energy.

“By contrast, digital processing is energy and carbon intensive, and inhibits rapid information gathering and processing,” she said.

“Neuromorphic vision systems are designed to use similar analog processing to the human brain, which can greatly reduce the amount of energy needed to perform complex visual tasks compared with today’s technologies.”

What are the potential applications?

The team used ultraviolet light as part of their experiments, and are working to expand this technology even further for visible and infrared light – with many possible applications such as bionic vision, autonomous operations in dangerous environments, shelf-life assessments of food and advanced forensics.

“Imagine a self-driving car that can see and recognise objects on the road in the same way that a human driver can or being able to able to rapidly detect and track space junk. This would be possible with neuromorphic vision technology.”

Walia said neuromorphic systems could adapt to new situations over time, becoming more efficient with more experience.

“Traditional computer vision systems – which cannot be miniaturised like neuromorphic technology – are typically programmed with specific rules and can't adapt as easily,” he said.

“Neuromorphic robots have the potential to run autonomously for long periods, in dangerous situations where workers are exposed to possible cave-ins, explosions and toxic air.”

The human eye has a single retina that captures an entire image, which is then processed by the brain to identify objects, colours and other visual features.

The team’s device mimicked the retina’s capabilities by using single-element image sensors that capture, store and process visual information on one platform, Walia said.

“The human eye is exceptionally adept at responding to changes in the surrounding environment in a faster and much more efficient way than cameras and computers currently can,” he said.

“Taking inspiration from the eye, we have been working for several years on creating a camera that possesses similar abilities, through the process of neuromorphic engineering.” 

Support for the research

The team used the Micro Nano Research Facility and the Microscopy and Microanalysis Research Facility at RMIT.

The work was also supported by the Australian Research Council and the National Computational Infrastructure.

The team’s research, ‘Long duration persistent photocurrent in 3 nm thin doped indium oxide for integrated light sensing and in-sensor neuromorphic computation’, is published in Advanced Functional Materials (DOI: 10.1002/adfm.202303641).

The paper has been published online: https://doi.org/10.1002/adfm.202303641

MULTIMEDIA FOR MEDIA USE

Here’s a link to photos related to the research that media can download and use: https://cloudstor.aarnet.edu.au/plus/s/cKmHNR61dLLY0Zg

Here’s a link to a YouTube video featuring the team’s chip technology: Professor Sumeet Walia - Winner, 2022 Eureka Prize for Emerging Leader in Science - YouTube

We can provide RAW video footage, upon request.


Contact details:

For media assistance, contact Will Wright on +61 417 510 735 or at will.wright@rmit.edu.au

More from this category

  • Energy, Engineering
  • 14/10/2024
  • 09:30
UNSW Sydney

Innovation Symposium to explore promising future for Australia in Vanadium Flow Battery supply chain

Advancements in long-duration energy storage, which are crucial for the future utilisation of renewable sources like solar and wind, will be discussed at UNSW Sydney this week. Emeritus Professor Maria Skyllas-Kazacos and her team at UNSW will host the 40th Anniversary Flow Battery Innovation Symposium, marking four decades since the groundbreaking invention of the vanadium redox flow battery (VFB). Since the first 1kW vanadium flow battery was built at UNSW, the technology has evolved significantly, with systems now being installed internationally at capacities into gigawatt hour scale. This scaling up of flow battery deployments signals a major shift in the…

  • Education Training, Engineering
  • 10/10/2024
  • 14:10
Charles Darwin University

CDU engineers shine in global researcher ranking

Charles Darwin University (CDU) engineers using research to build a more innovative and sustainable society are among the most prestigious academics in the world,…

  • Contains:
  • Engineering
  • 08/10/2024
  • 23:10
BlackBerry QNX

BlackBerry QNX Research Reveals Rising Pressure on Software Engineers Leads to Critical Trade-Offs in Safety and Security

75% of Developers Admit Deadline Urgency Often Compromises Functional Safety, Highlighting the Tension Between Rapid Innovation and Maintaining Certified, Robust Systems WATERLOO, ON / ACCESSWIRE / October 8, 2024 / BlackBerry Limited (NYSE:BB)(TSX:BB), today unveiled new research highlighting the mounting pressure on software engineers and developers to balance rapid innovation with safety and security. The comprehensive survey of 1,000 embedded software developers and engineers from around the world revealed the growing tension between meeting tight project deadlines and maintaining functional safety, with 75% of respondents acknowledging that urgency often forces them to compromise on key safety requirements.Widespread Frustration Leads 74%…

Media Outreach made fast, easy, simple.

Feature your press release on Medianet's News Hub every time you distribute with Medianet. Pay per release or save with a subscription.