Skip to content
Biotechnology, Defence

Research to merge human brain cells with AI secures national defence funding

Monash University 2 mins read

Monash University-led research into growing human brain cells onto silicon chips, with new continual learning capabilities to transform machine learning, has been awarded almost $600,000 AUD in the prestigious National Intelligence and Security Discovery Research Grants Program.

The new research program, led by Associate Professor Adeel Razi, from the Turner Institute for Brain and Mental Health, in collaboration with Melbourne start-up Cortical Labs, involves growing around 800,000 brain cells living in a dish, which are then “taught” to perform goal-directed tasks. Last year the brain cells’ ability to perform a simple tennis-like computer game, Pong, received global attention for the team’s research.

According to Associate Professor Razi, the research program’s work using lab-grown brain cells embedded onto silicon chips, “merges the fields of artificial intelligence and synthetic biology to create programmable biological computing platforms,” he said. 

“This new technology capability in future may eventually surpass the performance of existing, purely silicon-based hardware.

"The outcomes of such research would have significant implications across multiple fields such as, but not limited to, planning, robotics, advanced automation, brain-machine interfaces, and drug discovery, giving Australia a significant strategic advantage."

The project garnered funding from the prestigious Australian grant body because the new generation of applications of machine learning, such as self-driving cars and trucks, autonomous drones, delivery robots, intelligent hand-held and wearable devices, “will require a new type of machine intelligence that is able to learn throughout its lifetime,” Associate Professor Razi said.  

This “continual lifelong learning” means machines can acquire new skills without compromising old ones, adapt to changes, and apply previously learned knowledge to new tasks—all while conserving limited resources such as computing power, memory and energy. Current AI cannot do this and suffers from “catastrophic forgetting”. 

In contrast, brains excel at continual lifelong learning. 

The project’s aim is to grow human brain cells in a laboratory dish, called the DishBrain system, to understand the various biological mechanisms that underlie lifelong continual learning.

“We will be using this grant to develop better AI machines that replicate the learning capacity of these biological neural networks. This will help us scale up the hardware and methods capacity to the point where they become a viable replacement for in silico computing,“  Associate Professor Razi said. 

For media enquiries please contact:

Monash University
Tania Ewing
E: Tania.Ewing1@monash.edu 
T: 0408 378 422

For more Monash media stories, visit our news and events site 

For general media enquiries please contact:
Monash Media
E: media@monash.edu
T: +61 (0) 3 9903 4840

 


Contact details:

Tania Ewing
0408 378 422
Tania.Ewing1@monash.edu 

More from this category

  • Biotechnology, Manufacturing
  • 08/12/2023
  • 12:00
La Trobe University

BioNTech to establish clinical-scale mRNA manufacturing facility at La Trobe University

MEDIA RELEASE STRICTLY EMBARGOED:12:00 noon, Friday 8 December 2023 La Trobe University will be home to the manufacturing of new investigational mRNA therapies for…

  • Contains:
  • Biotechnology
  • 01/12/2023
  • 23:07
HanchorBio Inc.

HanchorBio to Present at the ESMO Immuno-Oncology 2023 Annual Congress

SAN FRANCISCO, CA and TAIPEI, TAIWAN / ACCESSWIRE / December 1, 2023 / HanchorBio Inc., a global clinical-stage biotechnology company focusing on the discovery and development of innovative immuno-biomedicines to treat a wide variety of patients suffering from hard-to-treat solid tumors or hematological malignancies, today announced the acceptance of poster presentation at the European Society for Medical Oncology Immuno-Oncology (ESMO-IO) 2023 Annual Congress, taking place in Geneva, Switzerland and online from December 6-8, 2023. Details of the presentation are as follows. The full abstracts will be made available on the ESMO website on Thursday, 30 November 2023 at 00:05 CET.Title:…

  • Defence
  • 29/11/2023
  • 12:50
Parliament of Australia

Australian Defence Force Academy billion dollar rebuild

Under thePublic Works Committee Act 1969,theParliamentary Standing Committee on Public Workswill consider two new referrals from the Department of Defence. The projects are: Department of Defence – RAAF Base Learmonth Redevelopment Enabling KC-30A Operations– $662.2million – Exmouth, Western Australia The works will deliver upgrades to the airfield at RAAF Base Learmonth to meet Defence requirements for the support of KC-30A operations and to improve overall airfield resilience. Department of Defence – Canberra Defence Precinct Tranche 1 Australian Defence Force Academy Living-in Accommodation Project– $1.25 billion – Canberra, ACT The works will replace existing Living-in Accommodation facilities and associated infrastructure at…

Media Outreach made fast, easy, simple.

Feature your press release on Medianet's News Hub every time your distribute with Medianet. Pay per release or save with a subscription.