Skip to content
Science

Radio signals unveil secrets of massive galaxies: study finds

Monash University 2 mins read

Black holes - the cosmic behemoths known for powering some of the brightest radio wave sources in the Universe - were the focal point of a study led by Associate Professor Michael Brown, from the School of Physics and Astronomy at Monash University.

The researchers delved into the mysteries of radio waves emitted by the most massive black holes using the cutting-edge Australian Square Kilometre Array Pathfinder (ASKAP).

In their pursuit to answer the question of whether radio waves are consistently emitted by the most massive black holes, the astronomers measured radio waves from the largest galaxies in the nearby Universe. The comprehensive survey  leveraged the Rapid ASKAP Continuum Survey (RACS).

Associate Professor Brown said ASKAP was capable of surveying vast swathes of the sky and was more sensitive than previous comparable radio survey.

While acknowledging that the formation of new stars in galaxies can also produce radio waves, the research team focused on galaxies with minimal or no star formation. Of the 587 nearby galaxies scrutinized, all 40 of the largest galaxies examined were found to emit radio waves.

"While it's possible there's some low-level star formation hidden in these galaxies, black holes seem the most likely cause for what we are seeing,” Associate Professor Brown said.

The study also revealed variations in radio wave emission among the very biggest galaxies, with some proving to be significantly more powerful than others. For instance, galaxy ESO 137-G 6 exhibited radio brightness approximately 10,000 times greater than that of galaxy NGC 6876. 

Work on this study began under the challenges of Melbourne’s COVID lockdowns, with undergraduate student Teagan Clarke undertaking preliminary work as part of Monash’s physics and astronomy research project unit.

"We've been able to really dig into this new data to start to uncover the differences in how these galaxies are shining in radio waves,” Teagan said. 

“This could tell us about their central black holes and how they power these massive galaxies." 

“Why different galaxies emit far more radio waves than others is a bit of a puzzle,” Associate Professor Brown said.

"However, we do see that galaxies that are powerful sources of radio waves appear to rotate slower than comparable galaxies that are weak sources of radio waves. Getting to the bottom of this is going to be challenging work for myself and my students."

The study, titled Radio continuum from the most massive early-type galaxies detected with ASKAP RACS has been accepted for publication in the publications of the Astronomical Society of Australia.


Media enquiries:

Monash University

Silvia Dropulich

Marketing, Media & Communications Manager, Monash Science

T: +61 3 9902 4513 M: +61 435 138 743

Email: silvia.dropulich@monash.edu

Media

More from this category

  • Biotechnology, Science
  • 23/12/2024
  • 09:00
Brandon Capital

CUREator + deploys $18.5 million in its first funding round

MELBOURNE, Australia — 23 December 2024 CUREator +, has announced that eight local startups developing innovations with the potential to save lives and improve wellbeing will receive grants totalling $18.5 million in its first funding round. CUREator+, delivered in partnership with Brandon BioCatalyst and ANDHealth, is a national program focused on accelerating the research translation and commercialisation of preclinical and clinical early-stage Australian medical research and medical innovations with commercial potential. These innovations include drugs (novel and repurposed), devices, diagnostics and digital technologies that address unmet needs. Enabling rapid assessment of the efficacy of cancer treatments AI-powered platform providing early…

  • General News, Science
  • 19/12/2024
  • 10:00
Australian National Maritime Museum

DEEPSEA CHALLENGER returns home to Sydney in brand-new Maritime Museum exhibition

The Australian National Maritime Museum is thrilled to become the temporary home of the DEEPSEA CHALLENGER, the iconic submersible which took James Cameron to the deepest trenches of the ocean in 2012. It features within a brand-new exhibition, Ultimate Depth: A Journey to the Bottom of the Sea, opening on December 19, 2024. The DEEPSEA CHALLENGER, was designed, tested, and engineered in Sydney, was co-engineered by the renowned Ron Allum, a local Sydney cave diver, engineer, deep-sea explorer and former NSW Senior Australian of the Year. The Museum is honoured to have Ron Allum visit the exhibition for its launch…

  • Contains:
  • Engineering, Science
  • 19/12/2024
  • 09:00
UNSW Sydney

This purple diamond could one day amplify signals from deep space

They say that diamonds are a girl’s best friend – but that might also soon be true for astronomers and astrophysicists following new research…

  • Contains:

Media Outreach made fast, easy, simple.

Feature your press release on Medianet's News Hub every time you distribute with Medianet. Pay per release or save with a subscription.