Skip to content
Science

Unlocking the secrets of the universe: new discoveries in Gravitational Waves

Monash University 2 mins read

A groundbreaking body of work led by Monash University physicists has opened a new pathway for understanding the universe’s fundamental physics.

The work, featured in an international review, published in Progress in Particle and Nuclear Physics, follows nearly a decade of work by scientists at the School of Physics and Astronomy in the Faculty of Science at Monash University.

Gravitational Waves (GWs) have only recently been detected for the first time, offering an exciting opportunity to delve into the mysteries of particle physics through first-order phase transitions (FOPTs) in the early cosmos.

FOPTs, occurring when new fundamental symmetries break down to the Standard Model, play a vital role in solving fundamental puzzles like the problem of cosmic matter, anti-matter, asymmetry or the problems of the dark sector, including dark matter and dark forces.

Researchers, including lead review author PhD candidate Mr Lachlan Morris, have embarked on a journey to review the process leading from particle physics models to observable GWs, highlighting the intricate steps involved.

“Our work serves as a comprehensive guide for particle physicists to explore the exciting realm of GW phenomenology," said Mr Morris.

“Understanding FOPTs is crucial for unravelling the mysteries of our universe.”

The review details the intricate journey from particle physics models to observable GWs induced by vacuum decays during FOPTs.

The review, co-authored by Professor Csaba Balazs, sheds light on the complex process, covering steps like building effective potentials, analysing transition rates, and predicting GW spectra.

“We're on the brink of a new era in Gravitational Wave astronomy," said Professor Balazs.

“The future holds immense potential for space- and ground-based detectors to reveal unseen phenomena, potentially emanating from FOPTs.”

The review outlines the path from a particle physics model to GWs, which contains many specialised parts, including:

  • Building a finite-temperature effective potential in a particle physics model and checking for FOPTs
  • Computing transition rates
  • Analysing the dynamics of bubbles of true vacuum expanding in a thermal plasma
  • Characterising a transition using thermal parameters
  • Making predictions for GW spectra using the latest simulations and theoretical results and considering the detectability of predicted spectra at future GW detectors.

For each step the review emphasises the subtleties, advantages and drawbacks of different methods, and reviews the state-of-the-art approaches available in the literature.

“This provides everything a particle physicist needs to begin exploring GW phenomenology,” Professor Balazs said.

“As we commemorate nearly a decade since the revolutionary discovery of Gravitational Waves, the era of ground-based detectors has transformed our understanding of the cosmos.

“However, the upcoming era of space-based detectors promises even more extraordinary discoveries, potentially unlocking the secrets of new physics beyond the Standard Model.”

MEDIA ENQUIRIES 

Silvia Dropulich
Marketing, Media & Communications Manager, Monash Science
T: +61 3 9902 4513 M: +61 435 138 743
E: silvia.dropulich@monash.edu

Hande Cater, Media and Communications Manager
M: +61 456 428 906
E: hande.cater@monash.edu 

More from this category

  • Biotechnology, Science
  • 23/12/2024
  • 09:00
Brandon Capital

CUREator + deploys $18.5 million in its first funding round

MELBOURNE, Australia — 23 December 2024 CUREator +, has announced that eight local startups developing innovations with the potential to save lives and improve wellbeing will receive grants totalling $18.5 million in its first funding round. CUREator+, delivered in partnership with Brandon BioCatalyst and ANDHealth, is a national program focused on accelerating the research translation and commercialisation of preclinical and clinical early-stage Australian medical research and medical innovations with commercial potential. These innovations include drugs (novel and repurposed), devices, diagnostics and digital technologies that address unmet needs. Enabling rapid assessment of the efficacy of cancer treatments AI-powered platform providing early…

  • General News, Science
  • 19/12/2024
  • 10:00
Australian National Maritime Museum

DEEPSEA CHALLENGER returns home to Sydney in brand-new Maritime Museum exhibition

The Australian National Maritime Museum is thrilled to become the temporary home of the DEEPSEA CHALLENGER, the iconic submersible which took James Cameron to the deepest trenches of the ocean in 2012. It features within a brand-new exhibition, Ultimate Depth: A Journey to the Bottom of the Sea, opening on December 19, 2024. The DEEPSEA CHALLENGER, was designed, tested, and engineered in Sydney, was co-engineered by the renowned Ron Allum, a local Sydney cave diver, engineer, deep-sea explorer and former NSW Senior Australian of the Year. The Museum is honoured to have Ron Allum visit the exhibition for its launch…

  • Contains:
  • Engineering, Science
  • 19/12/2024
  • 09:00
UNSW Sydney

This purple diamond could one day amplify signals from deep space

They say that diamonds are a girl’s best friend – but that might also soon be true for astronomers and astrophysicists following new research…

  • Contains:

Media Outreach made fast, easy, simple.

Feature your press release on Medianet's News Hub every time you distribute with Medianet. Pay per release or save with a subscription.