Skip to content
Science

Electricity generated by earthquakes might be the secret behind giant gold nuggets

Monash University 2 mins read

Scientists have long been fascinated by the formation of gold nuggets, often found nestled within quartz veins. New research led by Monash University geologists suggests that the process might be even more electrifying than we previously thought—literally.

Gold nuggets, prized for their rarity and beauty, have been at the heart of gold rushes for centuries.

The study is led by Dr Chris Voisey from the Monash University School of Earth Atmosphere and Environment and will be published in Nature Geoscience.

“The standard explanation is that gold precipitates from hot, water-rich fluids as they flow through cracks in the Earth’s crust,” said Dr Voisey.

“As these fluids cool or undergo chemical changes, gold separates out and becomes trapped in quartz veins,” he said.

“While this theory is widely accepted, it doesn't fully explain the formation of large gold nuggets, especially considering that the concentration of gold in these fluids is extremely low.”

The research team tested a new concept, piezoelectricity. Quartz, the mineral that typically hosts these gold deposits, has a unique property called piezoelectricity—it generates an electric charge when subjected to stress. This phenomenon is already familiar to us in everyday items like quartz watches and BBQ lighters, where a small mechanical force creates a significant voltage. What if the stress from earthquakes could do something similar within the Earth?

To test this hypothesis, researchers conducted an experiment designed to replicate the conditions quartz might experience during an earthquake. They submerged quartz crystals in a gold-rich fluid and applied stress using a motor to simulate the shaking of an earthquake. After the experiment, the quartz samples were examined under a microscope to see if any gold had been deposited.

“The results were stunning,” said study co-author Professor Andy Tomkins, from the Monash University School of Earth, Atmosphere and Environment.

“The stressed quartz not only electrochemically deposited gold onto its surface, but it also formed and accumulated gold nanoparticles,” he said.

“Remarkably, the gold had a tendency to deposit on existing gold grains rather than forming new ones.”
This is because, while quartz is an electrical insulator, gold is a conductor.

Once some gold is deposited, it becomes a focal point for further growth, effectively "plating" the gold grains with more gold.

“Our discovery provides a plausible explanation for the formation of large gold nuggets in quartz veins,” said Dr Voisey.

As the quartz is repeatedly stressed by earthquakes, it generates piezoelectric voltages that can reduce dissolved gold from the surrounding fluid, causing it to deposit.

Over time, this process could lead to the formation of significant gold accumulations, ultimately producing the massive nuggets that have captivated treasure hunters and geologists alike.

“In essence, the quartz acts like a natural battery, with gold as the electrode, slowly accumulating more gold with each seismic event,” said Dr Voisey.

This process could explain why large gold nuggets are so often associated with quartz veins formed in earthquake related deposits.

This new understanding of gold nugget formation not only sheds light on a longstanding geological mystery but also highlights the interrelationship between Earth’s physical and chemical processes. 

Media enquiries:
Silvia Dropulich
Marketing, Media & Communications Manager, Monash Science
T: +61 3 9902 4513 M: +61 435 138 743
Email: silvia.dropulich@monash.edu

Hande Cater
Media and Communications Manager, Monash University
Monash University
M: 0456428906
E: hande.cater@monash.edu

Media

More from this category

  • Medical Health Aged Care, Science
  • 16/09/2024
  • 11:29
La Trobe University

Centre to play key role in global AI medical research

Artificial intelligence promises to unlock new cures for cancer and other diseases by revolutionising the speed, cost and availability of personally designed drugs and enabling these to be tested on “digital twins" before being given to patients. AI will enable broad-spectrum like chemotherapy to be replaced by these more personalised, better targeted treatments. Scientists at La Trobe University's new Australian Centre for Artificial Intelligence in Medical Innovation (ACAMI), launched on September 13, will also apply AI techniques tomRNA therapy development to enable faster design of more precise and effective treatments. Vice-Chancellor Professor Theo Farrell said ACAMI would sit within La…

  • Science
  • 16/09/2024
  • 10:00
Monash University

Earth may have had a ring system 466 million years ago

In a discovery that challenges our understanding of Earth’s ancient history, researchers have found evidence suggesting that Earth may have had a ring system, which formed around 466 million years ago, at the beginning a period of unusually intense meteorite bombardment known as the Ordovician impact spike. This surprising hypothesis, published in Earth and Planetary Science Letters, stems from plate tectonic reconstructions for the Ordovician period noting the positions of 21 asteroid impact craters. All these craters are located within 30 degrees of the equator, despite over 70 per cent of Earth’s continental crust being outside this region, an anomaly…

  • Medical Health Aged Care, Science
  • 13/09/2024
  • 11:08
La Trobe University

Centre to play key role in global AI medical research

Artificial intelligence promises to unlock new cures for cancer and other diseases by revolutionising the speed, cost and availability of personally designed drugs and enabling these to be tested on “digital twins" before being given to patients. AI will enable broad-spectrum like chemotherapy to be replaced by these more personalised, better targeted treatments. Scientists at La Trobe University's new Australian Centre for Artificial Intelligence in Medical Innovation (ACAMI), launched today, will also apply AI techniques to mRNA therapy development to enable faster design of more precise and effective treatments. Vice-Chancellor Professor Theo Farrell said ACAMI would sit within La Trobe’s…

Media Outreach made fast, easy, simple.

Feature your press release on Medianet's News Hub every time you distribute with Medianet. Pay per release or save with a subscription.